分享有礼



分享至X
六年级数学下册第四章《比例》比例的基本性质 比例的基本性质 1、什么是比例? 表示两个比相等的式子叫比例。 2、怎样判断两个比是否能组成比例? 根据两个比的比值是否相等。 应用比例的意义判断哪两个比可以组成比例 6:3和8:5不能 0.2:2.5和4:3不能 40:2和60:3能 40:2=60:3 4 把左边的三角形按比例缩小后得到右边的三角形。 你能根据图中数据写出不同的比例吗? 两个三角形底的比和高的比相等。 6:3=4:2 两个三角形高的比和底的比相等。 4:2=6:3 每个三角形底和高的比相等。 6:4=3:2 每个三角形高和底的比相等。 4:6=2:3 组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的内项。例如: 其他三个比例的内项和外项各是多少? 两个三角形底的比和高的比相等。 6:3=4:2 两个三角形高的比和底的比相等。 4:2=6:3 每个三角形底和高的比相等。 6:4=3:2 每个三角形高和底的比相等。 4:6=2:3 观察上面的四个比例,你有什么发现? 6和2可以同时是比例的外项,也可以同时是比例的内项。 3和4可以同时是比例的内项,也可以同时是比例的外项。 6×2=3×4,两个外项的积与两个内项的积相等。 再写出一些比例,看看是不是有同样的规律。 如果用字母表示比例的四个项,即a:b=c:d,那么这个规律可以表示成: a×d=b×c 在比例里,两个外项的积等于两个内项的积,这叫作比例的基本性质。 如果把比例写成分数形式,把符号两端的分子、分母交叉相乘,结果怎样? 6/3=4/2 6×2=3×4 试一试 应用比例的基本性质,判断下面每组的两个比能否组成比例。 如果能组成比例,把组成的比例写出来。 3.6:1.8和0.5:0.25 (3.6)×(0.25)=(0.9) (1.8)×(0.5)=(0.9) 3.6:1.8=0.5:0.25 1/3:1/4和18:24 (1/3)×(24)=(8) (1/4)×(18)=(4.5) 练一练 1.一列火车从甲城开往乙城,行驶速度和所需时间如下表: 速度/(千米/时) 80 120 160 时间/时 6 4 3 (1)从表中选择两组数据,写出一个乘积相等的式子。 (2)根据上面的等式,写出一个比例。 (1)80×6=120×4 (2)80:120=4:6 2.根据比例的基本性质,在括号里填上合适的数。 (12):6=4:(2) 5:(4)=(10):8 练习七 1.应用比例的基本性质,判断下面哪几组的两个比可以组成比例,把组成的比例写出来。 (1)14:21和6:9 (2)3/4:1/10和15/2:1 (3)9:12和12:16 (3)1.4:2和7:10 2.下面哪几组中的四个数可以组成比例?把组成的比例写出来。 (1)5,7,15和21 (2)2,4,6和8 (3)4,3,1/3和1/4 (4)3/5,1/5,9和3 3.学校航模组有男生18人,女生15人;美术组有男生24人,女生20人。 (1)航模组男、女生人数的比和美术组男、女生人数的比能组成比例吗? (2)如果能组成比例,指出比例的内项和外项。 4.把图A按比例缩小得到图B,按比例放大得到图C。从图中选择两组数据组成比例,并用比例的基本性质进行检验。 5.根据比例的基本性质,在括号里填合适的数。 8:2=24:(6) (12)/15=4/5 1.5:3=(0.7):3.4 48:(120)=3.6:9
设置默认视频清晰度
自动(将会根据您的网速,自动调整清晰度)
标清(适合网速较慢,视频卡顿的用户)
高清(适合网速较快,视频无卡顿的用户)
超清(适合网速极快,追求高品质享受的用户)
选择课程
课堂提问
课程评论